

Application of micro-XRF to characterise diamond drill-core from lithium-caesium-tantalum pegmatites

By Naomi Potter

Reminder about XRF

Portable XRF

- Portable spectrometer
- Open beam
- 8 mm, 5 mm, 3 mm spot size
- Samples should be homogenized*
- Focus on quantification in 1D
- Na¹¹ to U⁹²(TRACER)
- Mg¹² to U⁹² (TITAN)

Micro-XRF

- Lab spectrometer
- Interlocked system
- 25 µm spot size
- Can quantify but focused on 2D maps
- Na¹¹ to U⁹² (M4)
- C⁶ to U⁹² (M4 Plus)

Benefits of µXRF

- Non-destructive
- Minimal sample preparation required
- No carbon coating
- Versatile range of sample types
- Mapping size up to 16 x 19 cm
- > Detection limits down to ppm levels
- Qualitative and quantitative analysis
- Mineral maps

Element compositional maps

- Full X-ray spectrum for each pixel
- "On-the-fly" measurements
- Quantitative and qualitative
 - Element distribution and relationships
 - Fluid pathways
 - Alteration and weathering textures

Mineral mapping

- Digital images and surface profiles
- Particle and grain size distributions
- Mineral identification and modal minerology

Mineral mapping

- Digital images and surface profiles
- Particle and grain size distributions
- Mineral identification and modal minerology

Sinclair Caesium Deposit

Workflow

Collect Core Samples

Geologic description of core and samples. - number?

pXRF Core Scanning

Semi-quantitative chemistry and mineralogy. Samples pulped and analysed. - number?

Micro-XRF Selective Scanning

Qualitative chemistry and micro-textures to answer specific questions. Nondestructive analysis of core up to 15 cm in length.

Microcline

Microcline

141.00

Fe

Next question...

11116

Microcline

18 cm

Microcline

18 cm

Ca

Rb

Na

-

7.11

Mn

.380

Cs

Cs - Na

Time to make a Cs-Rb version of this?

Pollucite

17.5 cm

Cs

Rb

Mn

Na

Sr

Ca

Fe

Ca-Sr-Rb

Summary

- Rapid, non-destructive technique
- Acquire qualitative and quantitative data at high spatial resolution
- Identify previously unknown minerals
- > Detect chemical differences at the microscale
- Investigate the micromorphology, chemical variation and mineral alteration
- Element distribution and mineral maps for mineralogical discrimination

Questions

The non-destructive element mapping has been used on the Sinclair mine to determine:

Sample selection for micro-XRF scanning

- 25.30 to 25.50m: Microcline
- 36.40 to 36.60m: Albite
- 49.40 to 49.71m: Pollucite zone
- 51.80 to 52.05m: Amblygonite with lepidolite, qtz and albite mix zone
- 55.85 to 56.10m: Lepidolite zone
- 61.70 to 62.03m: Albite muscovite wall zone

Elemental Maps

Images of the 6 samples analysed – except don't have images of all 6... Heat map of Cs or something?

Elemental maps are used to confirm the geochemical model and provide further information on which minerals the caesium and rubidium is concentrated and how pollucite formed

Bruker Confidential

Problem 1: Correlation of Cs and Rb – identified in same minerals

- Cs-Rb downhold using pXRF
- U-XRF analysis of Cs and Rb rich sample
- Rb in microcline hydrothermal overprint (wave of alteration through the sample)

PDD167: 51.80 - 52.05m: Amblygonite with lepidolite, qtz and albite mix zone Cs (bulk analysis 0.42%)

Rb (bulk analysis 1.03%)

Cs within the lepidolite

Incredible mapping of penetrating and cross cutting Ca-Sr & Ca veinlets.

Rb within the lepidolite

Problem 2: Formation of pollucite (Cs-rich)

- Pollucite PDD167: 49.4-49.7
- PDD167: 36.4-36.6 m
- Movement of elements through the lepidolite veins

PDD167: 36.4-36.6

Cs not replicating the rock texture and appears show two band moving through the sample distributed - alteration front?

Cs - Na

PDD167: 49.40 to 49.71m

- 1. Rubidium mapping out lepidolite views
- 2. Strontium mapping out anhedral albite
- Calcium mapping out "albite" pseudomorphs

Rubidium mapping out

- 1. veins of lepidolite
- 2. Ghosting "albite" fabric

Caesium pervasive through put the sample of pollucite Low concentrations in the lepidolite veinlets and "albite" NOTE elevated Cs in the Fe veins (1)

Summary

-100

Micro-XRF in LCT pegmatites

- No need for any thin sections for confirmation of the mineral system and modal minerology.
- Cesium is present in high quantities as a primary mineral and occurs in the microcline zone. This is used to constrain the exploration model.

Micro-XRF Summary

- Non-destructive technique
- Rapid analysis with minimal sample preparation
- Element composition and distribution with 'onthe-fly' measurements
- High resolution element distribution maps

PDD167:55-56 Lepidolite

Binee 65.380)

Cu

Rb

25.30 to 25.50m: Microcline

good quality mirocline with some green sericite coating fractures and rare green muscovite rare black specs of manganese

Mineralogy (asd): phengitic illite

36.40 to 36.60m: Albite

white chalky albite breaking down to clay with green sericite very broken zone mineralogy (asd): phengitic illite

49.40 to 49.71m: Pollucite

high grade pollucite zone with lepidolite veinlet texture rimmed by blue cleav greasy lustre appearance >20% Cs Bruker pXRF

Mineralogy (asd): pollucite

51.80 to 52.05m: Amblygonite with lepidolite, qtz and albite (cleavendite) mix zone - large amblygonite crystals 0.25m long with lep/qtz/cleav – Mineralogy (asd): aspectral

55.85 to 56.10m: Albite – lepidolite

lepidolite zone with rich blue albite (cleavendite) some qtz -

Mineralogy (asd): paragonite and kaolinite

61.70 to 62.03m: Albite, muscovite

Albite muscovite wall zone - some accessory garnet tormaline blue speck ?sodalite Mineralogy (asd): muscovitic-illite

Chemistry:

Sample			Samplel	Al2O																	Nb2O											Lith_
ID	from	to	D	3	Ва	CaO	Cd	Ce	Со	Cr	Cs	Cu	Fe	Ge	K2O	La	Li	MgO	MnO	Na2O	5	P2O5	Rb2O	Sb	Se	Sn	Sr	Та	Те	Zn	Zr	Plot
				pct	ppm	pct	ppm	ppm	ppm	ppm	ppm	ppm	pct	ppm	pct	ppm	ppm	pct	pct	pct	pct	pct	pct	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
PDD167			ARC112								4177						9144.											187.1				
_051	50.76	5 5 1	714	12.73	2.2	0.029	0.01	0.005	0.3	2	88	3 1	0.17	12.4	4.616	0.02	6	0.03	0.064	2.59	0.011	0.06	51.124	1.12	0.25	151.3	4.49	6	0.1	. 4	16.8	Gp9

M4 Mapping: PDD167: 51.80 - 52.05m

Prelim results

PDD167: 51.80 - 52.05m

Silica SiO2 Amblygonite (Li,Na)AIPO4(F,OH) NaAIS

> Lepidolite K(Li,AI)3(AI,Si,Rb)4O10(F,OH)

PDD167: 51.80 - 52.05m: Al (bulk analysis 6.74%)

PDD167: 51.80 - 52.05m: P (bulk analysis 4.7%); Cs (bulk analysis 0.42%)

Cs within the lepidolite

PDD167: 51.80 - 52.05m: Ca (bulk analysis 0.15%); Ba (bulk analysis 2 ppm)

Incredible mapping of penetrating and cross cutting Ca veinlets.

Not convinced of Ba presence (Cs L-lines?)

PDD167: 51.80 - 52.05m: Ba (bulk analysis 2 ppm)

PDD167: 51.80 - 52.05m: Tantalum (bulk assay = 187 ppm)

Discrete Ta phases (nuggets) associated with the lepidolite

PDD167: 51.80 - 52.05m: Ba (bulk analysis 2 ppm)

Ba on the phase boundary

Not convinced of Ba presence (Cs L-lines?)

PDD167: 51.80 - 52.05m: Cs (bulk analysis 0.42%)

Cs within the lepidolite

PDD167: 51.80 - 52.05m: Sr (bulk analysis 74 ppm)

Incredible mapping of penetrating and cross cutting Sr rich veinlets.

PDD167: 51.80 - 52.05m: Rb (bulk analysis 1.03%)

Incredible mapping of penetrating and cross cutting Ca-Sr & Ca veinlets.

Rb within the lepidolite

PDD167: 55.85-56.10

Τi

-

Rb

Ga

Sr

Si

Sample			Sampl																		Nb2O											I	_ith_I
ID	from	to	elD	Al2O3	Ва	CaO	Cd	Ce	Со	Cr	Cs	Cu	Fe	Ge	К2О	La	Li	MgO	MnO	Na2O	5	P2O5	Rb2O	Sb	Se S	Sn S	Sr -	Ta T	Te 1	ГіO2 2	Zn i	Zr l	ot
				pct	ppm	pct	ppm	ppm	ppm	ppm	ppm	ppm	pct	ppm	pct	ppm	ppm	pct	pct	pct	pct	pct	pct	ppm	ppm p	opm p	opm	ppm	opm p	oct p	opm	ppm	
PDD167	_		ARC1								348.1	1					1239																
062	61	62	212723	7.12	1.7	0.061	0.04	1.4	4 0.2	2 6	5 8	3 1.8	3 0.71	L 4.3	3 1.601	0.38	3 9	0.01	1 0.091	4.947	7 0.011	0.02	0.115	1.2	0.25	31.7	1.76	22.12	0.1	0.01	164	11.70	Gp2

M4 Mapping: PDD167: 61.7-62.03 m

Prelim results

Image

Rb

Fe

Mn

Si

.....

Nb

Zr

Sn

